The results, therefore, showed quite conclusively that the reaction proceeds according to the equation given above and that no carbon is lost if the reaction takes place in a current of chlorine. The extraction of tungsten from its ores by the action of chlorine, therefore, should be materially hastened by an intimate contact with carbon. This contact should be possible of accomplishment with a relatively small amount of carbon by keeping the mixture well agitated. In order to test this principle, samples of different tungsten ores including Scheelite, ferberite, wolframite and huebnerite were mixed with relatively small proportions of carbon, the mixtures were then introduced into the reaction chamber arranged so as to admit of constant stirring. In all cases complete

extraction of the tungsten was obtained and the rate of reaction was very materially increased by the stirring.

Summary and Conclusion

1. The reaction tungstic oxide-carbon-chlorine has been studied and has been shown to proceed by steps with the production of WO_2Cl_2 , $WOCl_4$ and probably WCl_6 , oxygen being evolved.

2. The presence of free oxygen among the reaction products was confirmed by first extracting the chlorine by absorption with mercury followed by the usual methods of gas analysis.

3. The role of carbon is that of a catalyst which increases the rate of the reaction.

Reno. Nevada

RECEIVED APRIL 24. 1934

[CONTRIBUTION FROM THE CHEMICAL DEPARTMENT, MICHIGAN COLLEGE OF MINING AND TECHNOLOGY]

The Surface Relations of the Xanthates

BY C. C. DE WITT, R. F. MAKENS AND A. W. HELZ

The mechanism of flotation of ores is one involving adsorption and other physico-chemical phenomena. Since there are many controversial views regarding various adsorption theories, it follows that the theories of flotation mechanism are equally unsettled.

This paper presents a correlation of the data on the surface relations of the various xanthates with the known performances of these xanthates in actual flotation practice.

Purification of Materials

The laboratory distilled water was redistilled once from an alkaline permanganate solution.

The solvents used, acetone, benzene, ether, were carefully dried and distilled. The carbon disulfide used in preparing the xanthates was redistilled, the middle portion being used.

Potassium hydroxide was recrystallized and made up as a solution containing 46.6% potassium hydroxide.

Metallic potassium was used in the preparation of the higher xanthates. The oxide coating was removed before use.

Thiophene-free benzene used for standardization purposes was distilled, the middle fraction was frozen, the mother liquor was poured off and the crystals were allowed to melt. After three recrystallizations the benzene was kept over fused calcium chloride and redistilled just before use.

The alcohols used in the preparation of the xanthates were obtained from reliable sources and were further purified by fractional distillation with a specially constructed 80-cm. Pyrex glass fractionating column sealed to a two-liter Pyrex flask. The corrected boiling points as obtained were: propyl alcohol. 97.06° (D), 97.2° (S) at 760 mm.; *n*-butyl alcohol. $117.70 \pm 0.05^{\circ}$ at 760 mm.; *n*-butylcarbinol $137.6 \pm 0.3^{\circ}$ at 760 mm.; isobutylcarbinol. $130.5 \pm 0.05^{\circ}$ at 760 mm.; *s*-butylcarbinol. $129.1 \pm 0.2^{\circ}$ at 760 mm.; methyl-*n*-propylcarbinol. $119.0 \pm 0.2^{\circ}$ at 760 mm.; diethylcarbinol. $115.8 \pm 0.3^{\circ}$ at 760 mm.; *n*-hexyl alcohol. 154.1 to 155.0° at 760 mm.; *n*-heptyl alcohol, 173.6 to 175.1° at 760 mm.; *n*-nonyl alcohol, 211.1 to 213.3° at 760 mm.

Preparation and Purification of Xanthates

Foster's¹ method as modified by De Witt and Roper² was used in the preparation of the xanthates. The additional precaution of having the solvents dry was found to give better yields of both potassium and sodium xanthates. The sodium ethyl xanthate was prepared by recrystallization of the commercial product. Normal propyl xanthate did not give clear water solutions even after five recrystallizations from acetone-ether solutions. Two samples of propyl alcohol were used: du Pont npropyl alcohol was carefully dried and fractionated, converted to propyl acetate. The acetate was dried and then converted to the alcohol by hydrolysis with 25% sodium hydroxide. The propyl alcohol so obtained was dried with calcium oxide and finally distilled from metallic calcium. Synthetic propyl alcohol was made from ethylmagnesium bromide and formaldehyde.

The quality of the xanthate was judged by the amount of

⁽¹⁾ L. S. Foster, "Preparation of Xanthates and Other Organic Thiocarbonates," Utah Engineering Experiment Station, Technical Paper No. 2, 1928.

⁽²⁾ De Witt and Roper. THIS JOURNAL, 54. 445 (1932).

Sulfur %

sulfur it contained after repeated recrystallization. The Carius method was used. Table I gives the analyses of the xanthates.

TABLE I

	Found	Calcd.
Sodium ethyl xanthate	44.34	44.48
Potassium ethyl xanthate	39.98	40.01"
Potassium n-propyl xanthate	37.22	36.80"
Potassium <i>n</i> -butyl xanthate	34.10	34.06
Potassium <i>n</i> -amyl xanthate	31.72	31.70
Potassium isoamyl xanthate	31.75	31.70
Potassium s-butylcarbinyl xanthate	31.74	31 .70
Potassium methyl-n-propylcarbinyl		
xanthate	31.80	31.70
Potassium <i>n</i> -hexyl xanthate	29.67	29.64
Potassium <i>n</i> -heptyl xanthate	27.75	27.84
Potassium n-nonyl xanthate	24.85	24.82
Potassium diethylcarbinyl xanthate	32.10	31.70°

^a From data of De Witt and Roper, *loc. cit.*; De Witt and Makens. THIS JOURNAL. 54, 456 (1932). ^b Solutions cloudy with slight yellow precipitate which repeated recrystallization would not remove. ^c Low yield, solutions clear; had a sharp irritating odor. Repeated recrystallization did not remove odor.

Apparatus

Drop Weight Method.—The apparatus used in obtaining part of the data was essentially that of Harkins and Gans.³ The usual precautions were observed. The tip diameter was 0.7980 ± 0.0005 cm. This tip gave 72.11 ± 0.006 dynes as the surface tension of water. Since the previous work⁴ the tip had been resurfaced while this work was in progress.

Ferguson Balanced Pressure Method.—The apparatus used by De Witt and Roper³ had been modified further as shown in Fig. 1. The apparatus is a single unit made entirely of Pyrex glass tubing. The final adjustment of pressure is made when the stopcock is closed by lowering bob C into tube B. The tube connecting B with A is large enough to allow quick adjustment. The pressure is indicated on the manometer M, which contains water. The pressure is adjusted roughly by applying pressure at D. The bob C is lowered or raised by means of a microscope stand in a manner similar to that outlined in the previous method.

Comparator readings gave the capillary radius as 0.02285 cm. Calibration with water using 71.97 dynes at 25° gave a mean radius of 0.022863 cm. The relative value of the radius was used.

The average value of duplicate determinations on two samples of xanthate solutions is reported for each concentration.

All weighing of xanthates was done on a micro balance sensitive to 0.01 mg. Bureau of Standards calibrated volumetric glassware was used in making up solutions. Bureau of Standards calibrated thermometers were used. All data were taken at $25 \pm 0.01^{\circ}$. The density determinations were made with a double-walled 10 or 25 cc. pycnometer.

TABLE II
SODIUM ETHYL XANTHATE, DROP WEIGHT METHOD
The tip radius was 0.3985 cm.

Molality	Density ²⁵ 4	Average γ	Average deviation
0.0272	0.9986	72.06	± 0.01
.0294	.9988	71.95	.02
.0427	. 9995	71.74	.03
.1184	1.0037	71.59	.01
. 1912	1.0077	71.18	. 02
.2061	1.0086	71.22	. 03
.3884	1.0182	70.33	. 05
.3950	1.0186	70.33	.00
.5652	1.0272	69.65	.01
. 8976	1.0433	68.30	. 01
. 9659	1.0466	68.09	.01
1.1189	1.0537	67.46	. 02
1.6838	1.0777	6 4.9 8	. 02
2.1933	1.0998	62.56	.03
4.1569	1.1573	59.28	. 03
8 2127	1 2342	53 08	03

TABLE III

POTASSIUM *n*-PROPYL XANTHATE, DROP WEIGHT METHOD The tip radius was -0.3990 cm. D. Propyl xanthate from du Pont *n*-propyl alcohol. S. Propyl xanthate from synthetic propyl alcohol.

			Average	Average
	Molality	Density 254	γ	deviation
D	0.0279	0.9985	71.24	± 0.05
S	.0626	. 9990	71.15	.15
D	. 1122	1.0075	69.94	. 06
s	. 1304	1.0090	69.92	.05
D	. 2292	1.0102	68.45	.04
D	.4359	1.0192	65.74	. 10
D	.6032	1.0361	63 .43	. 06
S	.8711	1.0442	59.54	00

⁽³⁾ Harkins and Gans, THIS JOURNAL. 52, 2287 (1930).

⁽⁴⁾ De Witt and Makens, ibid., 54. 456 (1932).

	TABLE IV	7				TABLE VIII		
POTASSIUM n-E	BUTYL XANTHAT	E. FERGUSON	N METHOD	Potassium	<i>n</i> -Nonyl	XANTHATE,	Ferguson	Метнор
Molality	Density ²	Ave	erage γ	Molalit	t y	Density ²⁵ 4	Ave	rage γ
0	0.9970	7	1.97	0.013	1	0.9980	54	4 .01
0.0579	1.0003	7	0.39	.027	3	. 9989	38	8.86
.1121	1.0035	6	8.88	.041	4	1.0000	30	0.90
.2121	1.0092	6	6.42	.0710 1.0018 30			0.64	
. 3231	1.0152	6	4.01		DROP	WEIGHT MI	алнор	
. 5839	1.0285	5	9.42		The tip r	adius was 0.	3990 cm.	
1.1836	1.0557	5	2.38		1p .	A	verage	Average
2.3851	1.0969	4	6. 5 0	Molality	Densi	ty ²⁵ 4	γ	deviation
3.0182	1.1138	4	5.05	0.0046	0.9	974 6	5.03	± 0.04
3.60^{a}	1.1280	4	3.90ª	. 0115	.9	977 5	5.33	. 10
^a The molalit	v of this solution	n was obtaine	ed from the			TAND IV		
density-concent	ration curve by	extrapolation	•		-	I ABLE IA		
				POTASSIUM	ISOBUTYLC.	ARBINYL XAN	NTHATE, DR	OP WEIGHT
		7				METHOD		
-	I ABLE V	D			The tip r	adius was 0.	.3985 cm.	
POTASSIUM n-A	MYL XANTHATE.	DROP WEIGH	IT METHOD	Molality	Dens	ity ²⁵ 4 Av	verage Y	Average deviation
TI	he tip radius was	0.3985 cm.		0.1174	1.0	035 6	3.34	± 0.06
Molality	Density25,	Average	Average	1269	1.0	042 6	2.91	.00
0.0491	0.0004	60 22	10.00	.2453	1.0	104 5	7.36	.2
0.0421	0.9994	09.00	+0.00	3854	1.0	176 5	1 98	.00
.0735	1.0012	66 00	.09	.6746	1.0	312 4	6.85	.12
1010	1.0025	65.04	.02	10110	 Ti			
.1010	1.0027	62 16	. 12		FER.	GUSON MET	HOD	
. 1070	1.0000	56 41	.02	Molali	ty	Density ²	AVE	rage γ
2622	1.0121	59 74	.04	0.089	13	1.0020	0	5.92 0.45
. 3033	1 0336	44 43	.04	. 184	1	1.0072	0	0.45
.1201	1.0000	11.10	.00			TABLE X		
	T (nr n V	7		Boxecourse	· Dumun o		A 317717 A 7717	FERCISON
	IABLE V	1		PUTASSIUM	3-DUTYLC	ARBINYL A	ANTHATE.	FERGUSUN
_		-				METHOD	•	
POTASSIUM n-H	HEXYL XANTHA	re. Ferguso	и Метнор	Molali	+ 1	Method Density ²⁵	Δ 37	
Pot assium n-H Molality	HEXYL XANTHA Density ²	re. Ferguso	n Method verage γ	Molali	ty	METHOD Density ²⁵ 4	Av	erage γ
Potassium n-H Molality 0.0499	HEXYL XANTHA Density ³ 1.0006	re. Ferguso 54 Ar	N METHOD verage γ 33.26	Molali 0.0	ty	METHOD Density ²⁵ 4 0.9970 1.0004	Av 7	erage γ 1.97 6 96
Potassium n-H Molality 0.0499 .1156	HEXYL XANTHA Density ³ 1.0006 1.0038	re. Ferguso 54 An 5 (n Μετηοd verage γ 33.26 54.85	Molali 0.0 .059	ty 98	METHOD Density ²⁵ 4 0.9970 1.0004 1.0034	Av 7 6	erage γ 1.97 6.96 4.63
Potassium n-H Molality 0.0499 .1156 .2315	HEXYL XANTHA Density 1.0006 1.0038 1.0096	re. Ferguso *4 An 6 (6 (6 (6 (6 (6 (6 (6 (6 (6 (N ΜΕΤΗΟΟ verage γ 33.26 54.85 47.90	Molali 0.0 .059 .114 315	ty 98 48	METHOD Density ²⁵ 4 0.9970 1.0004 1.0034 1.0140	Av. 7 6 6	erage γ 1.97 6.96 4.63 8 13
Potassium n-H Molality 0.0499 .1156 .2315 .3551	HEXYL XANTHA Density 1.0006 1.0038 1.0096 1.0160	FERGUSO 54 An 5 6 6 6 6 4 6 4 6 4	N ΜΕΤΗΟΟ verage γ 33.26 54.85 47.90 42.53	Molali 0.0 .059 .114 .313	ty 98 48 38	METHOD Density ²⁵ 0.9970 1.0004 1.0034 1.0140 1.0252	Av 7 6 6 5 5	erage γ 1.97 6.96 4.63 8.13 2.41
PotAssium n-H Molality 0.0499 .1156 .2315 .3551 .4702	HEXYL XANTHA Density 1.0006 1.0038 1.0096 1.0160 1.0214	FERGUSO 54 An 5 6 5 4 5 4 6 4 7 4	N METHOD yerage γ 33.26 54.85 47.90 42.53 38.87	Molali 0.0 .058 .114 .315 .534	ty 98 48 38 46 43	METHOD Density ²⁵ 4 0.9970 1.0004 1.0034 1.0140 1.0252 1.0321	Av 7 6 6 5 5 5 4	erage γ 1.97 6.96 4.63 8.13 2.41 8.63
PotAssium n-H Molality 0.0499 .1156 .2315 .3551 .4702	HEXYL XANTHA Density 1.0006 1.0038 1.0096 1.0160 1.0214	ГЕ. FERGUSO 54 Ал 5 (63 4 5	N METHOD yerage γ 33.26 54.85 47.90 42.53 38.87	Molali 0.0 .058 .114 .313 .534 .684 .855	ty 98 18 18 18 16 13 17	METHOD Density ²⁵ 4 0.9970 1.0004 1.0034 1.0140 1.0252 1.0321 1.0397	Av. 7 6 5 5 4 4	erage γ 1.97 6.96 4.63 8.13 2.41 8.63 7.16
Potassium n-H Molality 0.0499 .1156 .2315 .3551 .4702	HEXYL XANTHA' Density' 1.0006 1.0038 1.0096 1.0160 1.0214 DROP WEIGHT	ГЕ. FERGUSO 54 Ат 5 (63 4 5	N METHOD Verage γ 33.26 54.85 47.90 42.53 38.87	Molali 0.0 .059 .114 .313 .534 .684 .859	ty 98 48 38 46 43 37	METHOD Density ²⁵ 4 0.9970 1.0004 1.0034 1.0140 1.0252 1.0321 1.0397	Av. 7 6 6 5 5 5 4 4	erage γ 1.97 6.96 4.63 8.13 2.41 8.63 7.16
Potassium n-H Molality 0.0499 .1156 .2315 .3551 .4702	HEXYL XANTHA Density 1.0006 1.0038 1.0096 1.0160 1.0214 DROP WEIGHT he tip radius was	re. Ferguso ⁵⁴ Ат 5 (53 (53 (53 (53 (53 (54 (53 (53 (53 (53 (53 (53 (53 (53	N METHOD Verage γ 33.26 54.85 47.90 42.53 38.87 Average	Molali 0.0 .059 .114 .313 .534 .684 .859	ty 98 48 98 46 43 97	МЕТНО Density ²⁵ 4 0.9970 1.0004 1.0034 1.0140 1.0252 1.0321 1.0397 ТАВLЕ XI	A√ 7 6 6 5 5 4 4	erage γ 1.97 6.96 4.63 8.13 2.41 8.63 7.16
PotAssium n-H Molality 0.0499 .1156 .2315 .3551 .4702 Ti Molality	HEXYL XANTHA' Density' 1.0006 1.0038 1.0096 1.0160 1.0214 DROP WEIGHT he tip radius was Density ²⁵ 4	re. Ferguso 54 Av 5 6 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4	N METHOD verage γ 33.26 54.85 47.90 42.53 38.87 Average deviation	Molali 0.0 .059 .114 .313 .534 .684 .859	ty 98 48 38 46 43 97 METHYL-<i>n</i>	METHOD Density ²⁵ 4 0.9970 1.0004 1.0034 1.0140 1.0252 1.0321 1.0397 TABLE XI	Av. 7 6 5 5 4 4 4	erage γ 1.97 6.96 4.63 8.13 2.41 8.63 7.16 HATE, FER-
PotAssiUM n-H Molality 0.0499 .1156 .2315 .3551 .4702 TI Molality 0.0076	HEXYL XANTHA' Density' 1.0006 1.0038 1.0096 1.0160 1.0214 DROP WEIGHT he tip radius was Density ²⁵ 4 0.9976	re. Ferguso 54 A 5 (53 4 54 5 54 54 5 54 54 5 54 5	N METHOD verage γ 33.26 54.85 47.90 42.53 38.87 Average deviation ±0.06	Molali 0.0 .059 .114 .313 .534 .684 .859 Potassium	ty 98 48 38 46 43 97 METHYL- <i>n</i> . G	METHOD Density ²⁵ 4 0.9970 1.0004 1.0034 1.0140 1.0252 1.0321 1.0397 TABLE XI -PROPYLCARB USON METHO	Av. 7 6 5 5 4 4 4	erage γ 1.97 6.96 4.63 8.13 2.41 8.63 7.16 HATE, FER-
PotAssiUM n-H Molality 0.0499 .1156 .2315 .3551 .4702 TI Molality 0.0076 .0141	HEXYL XANTHA' Density' 1.0006 1.0038 1.0096 1.0160 1.0214 DROP WEIGHT he tip radius was Density' ³⁵ 4 0.9976 .9979	re. Ferguso 54 A 5 6 5 4 5 4 5 4 5 4 5 4 6 4 6 4 6 4 6 4 7 4 7 70.48 6 9.45	N METHOD verage γ 33.26 54.85 47.90 42.53 38.87 Average deviation ±0.06 .09	Molali 0.0 .059 .114 .313 .534 .684 .859 Potassium	ty 98 48 38 46 43 97 METHYL- <i>n</i> . G	METHOD Density ²⁵ 4 0.9970 1.0004 1.0034 1.0140 1.0252 1.0321 1.0397 TABLE XI -PROPYLCARB USON METHO Density ²⁵ 4	Av. 7 6 5 5 4 4 4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	erage γ 1.97 6.96 4.63 8.13 2.41 8.63 7.16 HATE. FER- erage γ
PotAssiUM n-H Molality 0.0499 .1156 .2315 .3551 .4702 TI Molality 0.0076 .0141	HEXYL XANTHA' Density' 1.0006 1.0038 1.0096 1.0160 1.0214 DROP WEIGHT he tip radius was Density' ³⁵ 4 0.9976 .9979	re. Ferguso 54 A 54 A	N METHOD verage γ 33.26 54.85 47.90 42.53 38.87 Average deviation ±0.06 .09	Molali 0.0 .059 .114 .313 .534 .684 .859 Potassium Molali 0.0	ty 98 48 48 46 43 97 METHYL- <i>n</i> . G	METHOD Density ²⁵ 4 0.9970 1.0004 1.0034 1.0140 1.0252 1.0321 1.0397 TABLE XI -PROPYLCARB USON METHO Density ¹⁵ 4 0.9970	Av. 7 6 5 5 4 4 4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	erage γ 1.97 6.96 4.63 8.13 2.41 8.63 7.16 HATE, FER- erage γ 1.97
PotAssiUM n-H Molality 0.0499 .1156 .2315 .3551 .4702 TI Molality 0.0076 .0141	HEXYL XANTHA' Density' 1.0006 1.0036 1.0096 1.0160 1.0214 DROP WEIGHT he tip radius was Density' ³⁵ 4 0.9976 .9979 TABLE V	re. Ferguso 5. A 5. C 5. C 6. C 6. C 7. C 4. C	N METHOD verage γ 33.26 54.85 47.90 42.53 38.87 Average deviation ±0.06 .09	Molali 0.0 .059 .114 .313 .534 .684 .859 Potassium Molali 0.0 .078	ty 98 48 48 46 43 97 METHYL- n G ty 33	METHOD Density ²⁵ 4 0.9970 1.0004 1.0034 1.0140 1.0252 1.0321 1.0397 TABLE XI -PROPYLCARB USON METHO Density ¹⁵ 4 0.9970 1.0014	Av. 7 6 5 5 4 4 4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	erage γ 1.97 6.96 4.63 8.13 2.41 8.63 7.16 HATE, FER- erage γ 1.97 7.63
PotAssium n-H Molality 0.0499 .1156 .2315 .3551 .4702 TI Molality 0.0076 .0141	HEXYL XANTHA' Density' 1.0006 1.0036 1.0096 1.0160 1.0214 DROP WEIGHT he tip radius was Density' ³⁵ 4 0.9976 .9979 TABLE V	re. Ferguso 5. A 5. C 5. C 6. C 6. C 7. C 6. C 7. C 7. C 4. C 7. C 7. C 4. C 7. C 4. C 7. C 4. C 6. C 4. C	N METHOD verage γ 33.26 54.85 47.90 42.53 38.87 Average deviation ±0.06 .09	Molali 0.0 .059 .114 .313 .534 .684 .859 Potassium Molali 0.0 .078 .124	ty 98 48 48 46 43 97 METHYL- n G ty 45	METHOD Density ²⁵ 4 0.9970 1.0004 1.0034 1.0140 1.0252 1.0321 1.0397 TABLE XI -PROPYLCARB USON METHO Density ¹⁵ 4 0.9970 1.0014 1.0040	Av. 7 6 5 5 4 4 4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	erage γ 1.97 6.96 4.63 8.13 2.41 8.63 7.16 HATE. FER- erage γ 1.97 7.63 5.13
Potassium n-H Molality 0.0499 .1156 .2315 .3551 .4702 TI Molality 0.0076 .0141 Potassium n-H	HEXYL XANTHA' Density ³ 1.0006 1.0036 1.0096 1.0160 1.0214 DROP WEIGHT he tip radius was Density ³⁵ 4 0.9976 .9979 TABLE V HEPTYL XANTHA	re. Ferguso 5. A 5. C 6. C 6. C 7. C 6. C 7. C	N METHOD verage γ 33.26 54.85 47.90 42.53 38.87 Average deviation ±0.06 .09 N METHOD	Molali 0.0 .059 .114 .313 .534 .684 .859 Potassium Molali 0.0 .078 .124 .215	ty 98 48 38 46 43 97 METHYL- <i>n.</i> G ty 33 45 52	METHOD Density ²⁵ 4 0.9970 1.0004 1.0034 1.0140 1.0252 1.0321 1.0397 TABLE XI -PROPYLCARE USON METHO Density ¹⁵ 4 0.9970 1.0014 1.0040 1.0091	Av. 7 6 5 5 4 4 4 9 1 NYL XANT 5 0 0 Av 7 6 6 6 6	erage γ 1.97 6.96 4.63 8.13 2.41 8.63 7.16 HATE, FER- erage γ 1.97 7.63 5.13 1.73
Potassium n-H Molality 0.0499 .1156 .2315 .3551 .4702 TI Molality 0.0076 .0141 Potassium n-H Molality 0.0072	HEXYL XANTHA' Density' 1.0006 1.0036 1.0096 1.0160 1.0214 DROP WEIGHT he tip radius was Density' ³⁵ 4 0.9976 .9979 TABLE V HEPTYL XANTHA Density'	re. Ferguso 5. A 5. A 5. A 6. A 6. A 7. A 7. Average 7. A 69. 45 11 TE, Ferguso 54. A 75. A 76. 48 77. 48 76. 48 77. 48 77. 48 76. 45 11 15. Ferguso 54. A 75. A 76. 48 77. 48 76. 48 77. 48 76. 48 77. 49 77. 48 77. 49 77.	N METHOD verage γ 33.26 54.85 47.90 42.53 38.87 Average deviation ± 0.06 .09 N METHOD verage γ by METHOD	Molali 0.0 .059 .114 .313 .534 .684 .859 Potassium Molali 0.0 .078 .124 .215 .371	ty 98 48 38 46 43 97 METHYL- <i>n.</i> G ty 33 45 52 48	METHOD Density ²⁵ 4 0.9970 1.0004 1.0034 1.0140 1.0252 1.0321 1.0397 TABLE XI -PROPYLCARE USON METHO Density ¹⁵ 4 0.9970 1.0014 1.0040 1.0091 1.0171	Av. 7 6 5 5 4 4 4 9 1 NYL XANT 5 0 0 7 6 6 6 6 5	erage γ 1.97 6.96 4.63 8.13 2.41 8.63 7.16 HATE. FER- erage γ 1.97 7.63 5.13 1.73 6.93
PotAssium n-H Molality 0.0499 .1156 .2315 .3551 .4702 TI Molality 0.0076 .0141 PotAssium n-H Molality 0.0076	HEXYL XANTHA' Density' 1.0006 1.0036 1.0096 1.0160 1.0214 DROP WEIGHT he tip radius was Density' ²⁵ 0.9976 .9979 TABLE V HEPTYL XANTHA Density' 0.9976	re. Ferguso 54 A 54 A 54 A 54 A 54 A 55 A METHOD 50.3990 cm. Average 7 70.48 69.45 HI TE, Ferguso 54 A 54 A 54 A 54 A 54 A 54 A 54 A 54 A 55 A 56 A 57 A 56 A 57 A	N METHOD verage γ 33.26 54.85 47.90 42.53 38.87 Average deviation ± 0.06 .09 N METHOD verage γ 38.78 (17.96)	Molali 0.0 .059 .114 .313 .534 .684 .859 Potassium Molali 0.0 .078 .124 .215 .371 .585	ty 98 48 48 46 43 97 METHYL-<i>n</i> G ty 33 45 52 45 52	METHOD Density ²⁵ 4 0.9970 1.0004 1.0034 1.0140 1.0252 1.0321 1.0397 TABLE XI -PROPYLCARE USON METHO Density ³⁵ 4 0.9970 1.0014 1.0040 1.0091 1.0171 1.0276	Av. 7 6 5 5 4 4 4 9 1NYL XANT 50 7 6 6 6 6 5 5 5	erage γ 1.97 6.96 4.63 8.13 2.41 8.63 7.16 HATE, FER- erage γ 1.97 7.63 5.13 1.73 6.93 1.58
PotAssium n-H Molality 0.0499 .1156 .2315 .3551 .4702 TI Molality 0.0076 .0141 PotAssium n-H Molality 0.0076 .1044	HEXYL XANTHA' Density ³ 1.0006 1.0036 1.0096 1.0160 1.0214 DROP WEIGHT he tip radius was Density ²⁵ 4 0.9976 .9979 TABLE V HEPTYL XANTHA Density ² 0.9976 1.0036	re. Ferguso 54 A 54 (6 54 (7 54 (7 54 (7) 70.48 (7)	N METHOD verage γ 33.26 54.85 47.90 42.53 38.87 Average deviation ± 0.06 .09 N METHOD verage γ 38.78 47.36 41.07	Molali 0.0 .059 .114 .313 .534 .684 .859 POTASSIUM Molali 0.0 .078 .124 .215 .371 .586 1.161	ty 98 48 38 46 43 97 METHYL-<i>n</i> G ty 33 45 52 18 50 14	METHOD Density ²⁵ 4 0.9970 1.0004 1.0034 1.0140 1.0252 1.0321 1.0397 TABLE XI -PROPYLCARE USON METHO Density ³⁵ 4 0.9970 1.0014 1.0040 1.0091 1.0171 1.0276 1.0524	Av. 7 6 5 5 4 4 4 9 1NYL XANT 50 7 6 6 6 6 5 5 4	erage γ 1.97 6.96 4.63 8.13 2.41 8.63 7.16 HATE. FER- erage γ 1.97 7.63 5.13 1.73 6.93 1.58 4.54
PotAssium n-H Molality 0.0499 .1156 .2315 .3551 .4702 TI Molality 0.0076 .0141 PotAssium n-H Molality 0.0076 .1044 .1641 2049	HEXYL XANTHA' Density ³ 1.0006 1.0036 1.0096 1.0160 1.0214 DROP WEIGHT he tip radius was Density ²⁵ 0.9976 .9979 TABLE V HEPTYL XANTHA Density ² 0.9976 1.0030 1.0057	re. Ferguso 54 A 54 A 54 A 54 A 54 A METHOD 50.3990 cm. Average γ 70.48 69.45 HI TE, Ferguso 54 A 54 A	N METHOD verage γ 33.26 54.85 47.90 42.53 38.87 Average deviation ± 0.06 .09 N METHOD verage γ 38.78 47.36 41.07 38.25	Molali 0.0 .059 .114 .313 .534 .684 .859 POTASSIUM Molali 0.0 .078 .124 .215 .371 .585 1.161 1.343	ty 98 48 38 46 43 97 METHYL-<i>n</i> G ty 33 45 52 48 50 44 35	METHOD Density ²⁵ 4 0.9970 1.0004 1.0034 1.0140 1.0252 1.0321 1.0397 TABLE XI -PROPYLCARE USON METHO Density ³⁵ 4 0.9970 1.0014 1.0040 1.0091 1.0171 1.0276 1.0524 1.0594	Av. 7 6 5 5 4 4 4 9 1NYL XANT 5 5 7 6 6 6 6 5 5 4 4 4	erage γ 1.97 6.96 4.63 8.13 2.41 8.63 7.16 HATE. FER- erage γ 1.97 7.63 5.13 1.73 6.93 1.58 4.54 3.73
PotAssium n-H Molality 0.0499 .1156 .2315 .3551 .4702 TT Molality 0.0076 .0141 PotAssium n-H Molality 0.0076 .1044 .1641 .3042 5100	HEXYL XANTHA' Density ³ 1.0006 1.0036 1.0096 1.0160 1.0214 DROP WEIGHT he tip radius was Density ²⁵ 0.9976 .9979 TABLE V HEPTYL XANTHA Density ² 0.9976 1.0030 1.0057 1.0117	re. Ferguso 54 A 54 A 54 A 54 A 54 A 70.48 69.45 II re, Ferguso 54 A 54	N METHOD verage γ 33.26 54.85 47.90 42.53 38.87 Average deviation ± 0.06 .09 N METHOD verage γ 38.78 47.36 41.07 38.25 27.12	Molali 0.0 .059 .114 .313 .534 .684 .859 POTASSIUM Molali 0.0 .078 .124 .215 .371 .585 1.161 1.342 1.953	ty 98 48 38 46 43 97 METHYL-<i>n</i> G ty 33 45 52 48 50 44 35 37	METHOD Density ²⁵ 4 0.9970 1.0004 1.0034 1.0140 1.0252 1.0321 1.0397 TABLE XI -PROPYLCARE USON METHO Density ³⁵ 4 0.9970 1.0014 1.0040 1.0091 1.0171 1.0276 1.0524 1.0594 1.0789	Av. 7 6 5 5 4 4 4 9 1NYL XANT 7 00 7 6 6 6 6 5 5 4 4 4 4	erage γ 1.97 6.96 4.63 8.13 2.41 8.63 7.16 HATE. FER- erage γ 1.97 7.63 5.13 1.73 6.93 1.58 4.54 3.73 2.34
PotAssium n-H Molality 0.0499 .1156 .2315 .3551 .4702 TT Molality 0.0076 .0141 PotAssium n-H Molality 0.0076 .1044 .1641 .3042 .5128	HEXYL XANTHA' Density ³ 1.0006 1.0036 1.0096 1.0160 1.0214 DROP WEIGHT he tip radius was Density ²⁵ 0.9976 .9979 TABLE V HEPTYL XANTHA Density ³ 0.9976 1.0030 1.0057 1.0117 1.0197	re. Ferguso 54 A 54 A 54 A 54 A 54 A METHOD 50.3990 cm. Average γ 70.48 69.45 HI TE, Ferguso 54 A 54 A	N METHOD Verage γ 33.26 54.85 47.90 42.53 38.87 Average deviation ± 0.06 .09 N METHOD Verage γ 38.78 47.36 41.07 38.25 37.12	Molali 0.0 .059 .114 .313 .534 .684 .859 POTASSIUM Molali 0.0 .078 .124 .215 .371 .586 1.161 1.343 1.953	ty 98 48 38 46 43 97 METHYL- <i>n</i> G ty 33 45 52 18 50 14 35 37	METHOD Density ²⁵ 4 0.9970 1.0004 1.0034 1.0140 1.0252 1.0321 1.0397 TABLE XI -PROPYLCARE USON METHO Density ³⁵ 4 0.9970 1.0014 1.0040 1.0091 1.0171 1.0276 1.0524 1.0594 1.0789	Av. 7 6 5 5 4 4 4 9 1NYL XANT 7 6 6 6 6 5 5 4 4 4 4	erage γ 1.97 6.96 4.63 8.13 2.41 8.63 7.16 HATE. FER- erage γ 1.97 7.63 5.13 1.73 6.93 1.58 4.54 3.73 2.34
PotAssium n-H Molality 0.0499 .1156 .2315 .3551 .4702 TI Molality 0.0076 .0141 PotAssium n-H Molality 0.0076 .1044 .1641 .3042 .5128	HEXYL XANTHA' Density ³ 1.0006 1.0036 1.0096 1.0160 1.0214 DROP WEIGHT he tip radius was Density ³⁵ 0.9976 .9979 TABLE V HEPTYL XANTHA Density ³ 0.9976 1.0030 1.0057 1.0117 1.0197 DROP WEIGHT	re. Ferguso ⁵⁴ A ⁵⁴ A ⁵⁴ A ⁵⁴ A ⁵⁵ A METHOD ⁵⁰ 0.3990 cm. Average γ 70.48 ⁵⁶ A ⁵⁶ A ⁵⁴ A ⁵⁵ A ⁵⁴ A ⁵⁴ A ⁵⁵ A ⁵⁴ A ⁵⁵ A ⁵⁴ A ⁵⁵	N METHOD verage γ 33.26 54.85 47.90 42.53 38.87 Average deviation ± 0.06 .09 N METHOD verage γ 38.78 47.36 41.07 38.25 37.12	Molali 0.0 .058 .114 .313 .534 .684 .859 POTASSIUM Molali 0.0 .078 .124 .215 .371 .585 1.161 1.342 1.953 Di	ty 98 48 38 46 43 97 METHYL- <i>n</i> . G ty 33 45 52 18 50 14 35 37 Scussion	METHOD Density ²⁵ 4 0.9970 1.0004 1.0034 1.0140 1.0252 1.0321 1.0397 TABLE XI -PROPYLCARE USON METHO Density ¹⁵ 4 0.9970 1.0014 1.0040 1.0091 1.0171 1.0276 1.0524 1.0594 1.0789 of Experim	Av. 77 66 55 44 4 4 9 1NYL XANT 50 Av 77 66 66 55 4 4 4 4 4 4 4 4 4 4	erage γ 1.97 6.96 4.63 8.13 2.41 8.63 7.16 HATE. FER- erage γ 1.97 7.63 5.13 1.73 6.93 1.58 4.54 3.73 2.34 ta
PotAssium n-H Molality 0.0499 .1156 .2315 .3551 .4702 TT Molality 0.0076 .0141 PotAssium n-H Molality 0.0076 .1044 .1641 .3042 .5128	HEXYL XANTHA' Density ³ 1.0006 1.0036 1.0096 1.0160 1.0214 DROP WEIGHT he tip radius was Density ³⁵ 0.9976 .9979 TABLE V HEPTYL XANTHA Density ³ 0.9976 1.0030 1.0057 1.0117 1.0197 DROP WEIGHT he tip radius was	re. Ferguso ⁵⁴ A ⁵⁴ A ⁵⁴ A ⁵⁴ A ⁵⁴ A ⁵⁵ A ⁷⁰ A 	N METHOD Verage γ 33.26 54.85 47.90 42.53 38.87 Average deviation ± 0.06 .09 N METHOD Verage γ 38.78 47.36 41.07 38.25 37.12	Molali 0.0 .058 .114 .313 .534 .684 .859 POTASSIUM Molali 0.0 .078 .124 .216 .371 .586 1.161 1.342 1.955 Di Tables	ty 98 48 98 48 97 METHYL- <i>n</i> G ty 33 45 52 18 50 14 35 37 scussion II to VT	METHOD Density ²⁵ 4 0.9970 1.0004 1.0034 1.0140 1.0252 1.0321 1.0397 TABLE XI -PROPYLCARE USON METHO Density ³⁵ 4 0.9970 1.0014 1.0040 1.0091 1.0171 1.0276 1.0524 1.0594 1.0789 of Experim II inclusiv	Av. 7 6 5 5 4 4 4 9 1NYL XANT 5 5 7 6 6 6 6 5 5 4 4 4 4 4 9 8 9 9 9 9 9 9 9 9 9 9 9 9 9	erage γ 1.97 6.96 4.63 8.13 2.41 8.63 7.16 HATE, FER- erage γ 1.97 7.63 5.13 1.73 6.93 1.58 4.54 3.73 2.34 ta curves in
PotAssium n-H Molality 0.0499 .1156 .2315 .3551 .4702 TI Molality 0.0076 .0141 PotAssium n-H Molality 0.0076 .1044 .1641 .3042 .5128 Th	HEXYL XANTHA' Density ² 1.0006 1.0036 1.0096 1.0160 1.0214 DROP WEIGHT he tip radius was Density ²⁵ 0.9976 .9979 TABLE V HEPTYL XANTHA Density ² 0.9976 1.0030 1.0057 1.0117 1.0197 DROP WEIGHT te tip radius was	re. Ferguso ⁵⁴ A ⁵⁴ A ⁵⁴ A ⁵⁴ A ⁵⁵ A ⁵⁶ A ⁷⁰ A8 ⁷⁰	N METHOD Verage γ 33.26 54.85 47.90 42.53 38.87 Average deviation ±0.06 .09 N METHOD Verage γ 38.78 47.36 41.07 38.25 37.12 Average	Molali 0.0 .058 .114 .313 .534 .684 .859 PotASSIUM Molali 0.0 .078 .124 .371 .586 1.161 1.342 1.956 Di Tables Fig. 2 sho	ty 98 48 98 48 97 METHYL- <i>n</i> G ty 33 45 52 18 50 14 35 37 scussion II to VI w the su	METHOD Density ²⁵ 4 0.9970 1.0004 1.0034 1.0140 1.0252 1.0321 1.0397 TABLE XI -PROPYLCARE USON METHO Density ³⁵ 4 0.9970 1.0014 1.0040 1.0091 1.0171 1.0276 1.0524 1.0594 1.0789 of Experim II inclusive	Av. 77 66 55 44 44 44 44 500 77 66 66 55 44 44 44 44 nental Da e and the	erage γ 1.97 6.96 4.63 8.13 2.41 8.63 7.16 HATE, FER- erage γ 1.97 7.63 5.13 1.73 6.93 1.58 4.54 3.73 2.34 ta curves in eous solu-
PotAssium n-H Molality 0.0499 .1156 .2315 .3551 .4702 TI Molality 0.0076 .0141 PotAssium n-H Molality 0.0076 .1044 .1641 .3042 .5128 Th Molality	HEXYL XANTHA Density ² 1.0006 1.0036 1.0096 1.0160 1.0214 DROP WEIGHT he tip radius was Density ²⁵ 0.9976 .9979 TABLE V HEPTYL XANTHA Density ²⁵ 0.9076 1.0030 1.0057 1.0117 1.0197 DROP WEIGHT te tip radius was Density ²⁵	re. Ferguso 54 Average 70.48 7	N METHOD Verage γ 33.26 54.85 47.90 42.53 38.87 Average deviation ± 0.06 .09 N METHOD Verage γ 38.78 47.36 41.07 38.25 37.12 Average deviation	Molali 0.0 .059 .114 .313 .534 .684 .859 PotASSIUM Molali 0.0 .078 .124 .371 .586 1.161 1.342 1.956 Di Tables Fig. 2 sho tions of t	ty 98 18 18 18 19 19 10 11 10 11 10 11 10 11 10 11 10 11 10 10	METHOD Density ²⁵ 4 0.9970 1.0004 1.0034 1.0140 1.0252 1.0321 1.0397 TABLE XI -PROPYLCARB USON METHO Density ³⁵ 4 0.9970 1.0014 1.0040 1.0091 1.0171 1.0276 1.0524 1.0594 1.0789 of Experim II inclusive rface tensity	Av 7 6 6 5 5 4 4 4 4 9 1NYL XANT 7 6 6 6 6 6 5 5 4 4 4 4 4 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9	erage γ 1.97 6.96 4.63 8.13 2.41 8.63 7.16 HATE, FER- erage γ 1.97 7.63 5.13 1.73 6.93 1.58 4.54 3.73 2.34 ta curves in eous solu-
PotAssium n-H Molality 0.0499 .1156 .2315 .3551 .4702 TI Molality 0.0076 .0141 PotAssium n-H Molality 0.0076 .1044 .1641 .3042 .5128 Th Molality 0.0116	HEXYL XANTHA Density ² 1.0006 1.0036 1.0036 1.0160 1.0214 DROP WEIGHT he tip radius was Density ²⁵ 0.9976 .9979 TABLE V HEPTYL XANTHA Density ²⁵ 0.9976 1.0030 1.0057 1.0117 1.0197 DROP WEIGHT te tip radius was Density ²⁵ 0.9977	re. Ferguso 54 Average 70.48 70.41 7	N METHOD Verage γ 33.26 54.85 47.90 42.53 38.87 Average deviation ± 0.06 .09 N METHOD Verage γ 38.78 47.36 41.07 38.25 37.12 Average deviation ± 0.06 .07 .07 .08 .07 .08 .07 .08 .07 .08 .07 .09 .09 .09 .09 .09 .09 .09 .09	Molali 0.0 .058 .114 .313 .534 .684 .859 POTASSIUM Molali 0.0 .078 .124 .371 .586 1.161 1.342 1.956 Di Tables Fig. 2 sho tions of t	ty 98 18 18 18 18 19 19 10 11 11 10 10	METHOD Density ²⁵ 4 0.9970 1.0004 1.0034 1.0140 1.0252 1.0321 1.0397 TABLE XI -PROPYLCARE USON METHO Density ³⁵ 4 0.9970 1.0014 1.0040 1.0091 1.0171 1.0276 1.0524 1.0594 1.0789 of Experim II inclusivy rface tensic	Av 7 6 5 4 4 4 4 4 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1	erage γ 1.97 6.96 4.63 8.13 2.41 8.63 7.16 HATE, FER- erage γ 1.97 7.63 5.13 1.73 6.93 1.58 4.54 3.73 2.34 ta curves in eous solu- rmal xan-

TABLE XII						
Potassium	DIETHYLCARBINYL	XANTHATE,	Ferguson			
	METHOD)				
Molali	ty Density ²⁴	4 Av	rerage γ			
0.0	0.9970	7	1.97			
. 100	9 1.0030	e	67.13			
.215	59 1.0095	e	3.08			
. 359	0 1.0174	5	69.46			
.461	4 1.0228	5	57.14			
.737	79 1.0365	5	2.30			

creases the surface tension lowering. This is in accord with Traube's rule.

Tables V, and IX to XII inclusive and Fig. 3 show the surface tensions of five of the isomeric amyl xanthates. It is not certain how the xanthates arrange themselves in very dilute solutions,

but at higher concentrations the arrangement is definite and in the order: (1) n-amyl, (2) isoamyl, (3) s-butyl carbinyl, (4) methyl-n-propylcarbinyl, (5) diethylcarbinyl. The numbers indicate the order taken if small differences are considered, e. g., the surface activity of potassium n-amyl xanthate is greatest, while that of potassium diethylcarbinyl xanthate is least. If it is assumed that the nonmay in some cases shield polar end, the above order

In regard to the first factor it might be expected that Freundlich's⁵ conclusion would furnish a reliable answer: "The absolute amounts adsorbed from solution are of the same order as those condensed by capillary active substances upon the interface liquid–gas." In general, Freundlich shows that the interface solid–liquid is exactly analogous to the liquid–gas interface. It is notable that in all examples which Freundlich gives to substantiate this hypothesis, the adsorbents are various forms of charcoal. From various studies of the effect of carbon on reaction rates, it appears that carbon is non-polar with respect to water. It seems, therefore, that the condition that the adsorbent be non-polar⁶ might be included in the

assumed that the nonpolar part of a molecule termined by the Ferguson method: ①, indicates a point determined by the drop weight may in some cases shield method; I, potassium *n*-ethyl xanthate; II, potassium *n*-propyl xanthate; III, potassium or nullify the effect of the n-butyl xanthate; IV, potassium *n*-amyl xanthate: V. potassium *n*-hexyl xanthate; VI. potassium *n*-heptyl xanthate: VII. potassium *n*-nonyl xanthate.

is readily understood. For example, in an extended molecule, such as potassium n-amyl xanthate, the shielding effect would be small, while in a bunched molecule, such as the potassium diethylcarbinyl xanthate, the shielding effect would be large.

It is generally agreed that a collector, such as a xanthate, produces a water-repellent coating on the mineral surface. Two things about the collector must therefore be known: first, its tendency to form a coating, and, second, just how strongly water-repellent the resultant coating is. The problem is complicated by the fact that the two functions are not necessarily independent; that is, any increase in the repellent force may decrease the adsorption. The solution of the problem is rendered still more difficult by the fact that the type of adsorption taking place is uncertain. above quotation. If the adsorbent is polar, an analogy with the above might not be expected. Recent theories of adsorption, however, consider a solid surface too complicated and specific in nature to permit such a generalization.

If Freundlich's statement were applicable to flotation problems, surface tension data should prove useful in predicting the amount of adsorption. However, if as Gaudin' points out "The mineral particle is polar," we may not have a case analogous to the experiments substantiating Freundlich's statement. Freundlich⁵ has shown that Traube's rule holds for the fatty acids and ⁽⁵⁾ Freundlich, "Colloid and Capillary Chemistry," E. P. Dutton and Company, New York, 1922.

(7) Gaudin, Eng. Min. J., 125, 1045 (1927).

⁽⁶⁾ Kruyt and van Klooster, "Colloids," John Wiley and Sons. Inc., 1930, p. 25.

the urethans at both interfaces, liquid-gas and liquid-solid. The data reported for the various xanthates show that Traube's rule may also be expected to hold for these compounds.

If the concentration of the xanthate molecules in the solid-liquid interface is greater than the concentration in the main body of the liquid—a condition which certainly exists in the liquid—gas interface—the xanthate possessing the largest negative value of $d\gamma/dc$ should have the greatest number of molecules in the interface liquid—solid, and therefore should be adsorbed more completely to form the water-repellent coating necessary to float the solid. particles and forms a firmly adherent film, the xanthate presenting the largest number of molecules at the interface liquid-solid should react more completely. If adsorption of the xanthate molecule takes place at the liquid-solid interface, an equilibrium would be expected to exist at any initial xanthate concentration between xanthate molecules adsorbed on the mineral and those present both in the main body of the liquid and also in the liquid-air interface. The amount adsorbed at the solid-liquid interface would, according to Freundlich, be of the same order of magnitude as at the gas-liquid interface.

In either case any excess of xanthate that may

be present in the solution because of equilibrium or other conditions is available for adsorption at the liquid-air interface and should, finally, be carried over in the froth with the ore values, provided the xanthate of itself possesses frothing properties.

Gaudin⁸ working with chalcocite concludes "it can be stated as a rule, within the limits of the present experimental facts, that the activity of a collector from a homologous series increases as the nonpolar part of the reagent molecule increases." This is in accord with Traube's rule and with surface tension-concentration data of the various xanthates

Fig. 3.—Surface tension of aqueous solutions of the potassium xanthates of the amyl alcohols: I, \bigcirc , *n*-butylcarbinol; II, \bigcirc , isobutylcarbinol; III, \bigcirc , *s*-butylcarbinol: IV. \bigcirc , methyl-*n*-propylcarbinol; V, \bigcirc . diethylcarbinol.

This viewpoint implies that the total adsorption is of two kinds. The first of these is concerned with that portion of the xanthate which adsorbs on or reacts with the surface of the ore particles. This part of the adsorption we choose to designate the promoter activity, because it involves that part of the xanthate which supplies the mineral with a water-repellent coating. The second portion of the adsorption is concerned with the xanthate adsorbed in the liquid-air interface. An additional quantity of xanthate may also be dissolved in the main body of the liquid.

If a chemical reaction takes place between the xanthate molecules and the surface of the mineral

reported in this paper.

Gaudin and Martin⁹ show that the maximum promoter activity is reached with malachite-calcite mixtures when the non-polar part of the xanthate molecule contains five carbon atoms. However, they report their results on the basis of pounds of xanthate used per ton of ore. When the data are recomputed on the basis of moles of xanthate used per ton, the promoter activity of the xanthates increases regularly up to heptyl xanthate with no maximum apparent in

⁽⁸⁾ Gaudin. University of Utah, Research Technical Paper No. 4. Part 2, p. 7.

⁽⁹⁾ Gaudin and Martin, "Flotation Fundamentals," Part III, Utah Eng. Expt. Station Pub. No. 5, p. 15 et seq. (1928).

the range of concentration used in flotation practice.

Gaudin⁹ has shown that the cleanest concentrates are obtained with xanthates containing up to five carbon atoms in the hydrocarbon chain. His experiments on zinc ores indicate that octyl xanthate of itself causes frothing. It is, therefore, probable that part of the longer carbon chain xanthates are removed in the froth without reaction at the mineral surface. Preliminary experiments in this Laboratory with normal hexyl and normal nonyl xanthates indicate that normal hexyl froths much less than does normal nonyl xanthate. Quantitative experiments are under way.

It seems quite probable that if an actual maximum activity calculated on a molar basis occurs, this maximum will be caused by the carrying over of the unreacted collecting agent in the froth. Further, from the data cited, it is believed that such a collector will contain more than seven carbon atoms in the hydrocarbon chain.

The data cited would lead one to surmise that the order of the efficiency of xanthates as collectors for both chalcocite and malachite could have been predicted from the surface tension-concentration data of the several xanthates. However, in arriving at such a generalization it may be necessary to make allowance for the frothing properties of the higher xanthates.

Summary

1. A surface tension apparatus is described which involves Ferguson's principle. The novel

features of the apparatus are the pressure adjusting part and the unified arrangement which readily lends itself to immersion in a thermostat.

2. The surface tension of aqueous solutions of a number of xanthates is reported. A qualitative statement of the results is as follows. (a) The molal lowering of the surface tension is approximately the same for both sodium and potassium ethyl xanthates within the limits of equal solubility. (b) The lowering of surface tension increases in accordance with Traube's rule, as the homologous series of xanthates is ascended from the ethyl group up to and including the nonyl group. (c) Isomeric forms of potassium amyl xanthate differ considerably in their effect upon the surface tension of water. The lowering sequence of the xanthates is as follows in fairly concentrated solutions: (1) n-amyl, (2) isoamyl, (3) s-butylcarbinyl, (4) methyl-n-propylcarbinyl, (5) diethylcarbinyl. (d) In the dilute range the slopes of the surface tension-concentration curves of the isomeric amyl xanthates are in accord with the findings of Swainson and Anderson¹⁰ as to the promoter activity of the isomeric amyl xanthates -secondary, iso, normal.

3. The efficiency of the normal xanthates, ethyl to heptyl inclusive, as collectors for both chalcocite and malachite has been correlated with the surface tension-concentration data of these xanthates.

(10) Swainson and Anderson, Am. Electrochem. Preprint, 1931.HOUGHTON, MICH. RECEIVED AUGUST 16, 1934

Volumetric Determinations in Strongly Alkaline Solutions. I. The Titration of Cobalt with Ferricyanide

BY O. TOMÍČEK AND F. FREIBERGER

A number of metals have been determined oxidimetrically with ferricyanide,¹ and we wish to present in this communication the direct oxidimetric titration of cobaltous salts by potassium ferricyanide.

Materials

Potassium ferricyanide solutions were made up 0.1 molar by weight from c. p. salt containing a trace of ferrocyanide and the normality determined both potentiometrically² and iodimetrically.³ The solutions were stored in brown bottles and the titer was found to be constant during a week and to lose 0.005 N in some three months. The 0.05 and 0.01 N solutions were prepared by dilution and analysis.

Potassium iodide, sodium thiosulfate, potassium permanganate, and other solutions were prepared from average pure salts and standardized by the usual methods.

Cobalt Salts and Solutions.—Cobalt sulfate heptahydrate (Kahlbaum-Schering) was used in preliminary

[[]CONTRIBUTION FROM THE INSTITUTE OF ANALYTICAL CHEMISTRY OF CHARLES UNIVERSITY]

⁽¹⁾ Tomíček, Rec. irav. chim., **44**, 410 (1925); Furman and Evans, THIS JOURNAL, **51**, 1128 (1929); Hahn, Z. angew. Chem., **40**, 349 (1927); del Fresno and Valdés, Z. anorg. allgem. Chem., **183**, 251 (1929).

⁽²⁾ E. Müller and O. Diefenthäler, Z. anorg. allgem. Chem., 135, 265 (1924).

⁽³⁾ I. M. Kolthoff, Pharm. Weekblad. 59, 66 (1922).